第2回 吸光分析

紫外・可視吸光光度法

色の足し算,引き算

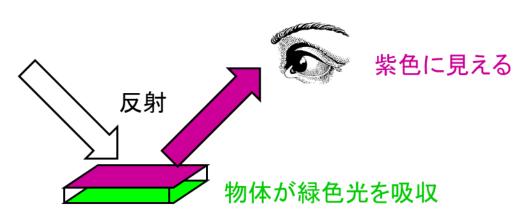
☆ 青 + 緑 = 青緑

☆ 赤 + 青 = 紫色

☆ 赤 + 緑 = 黄色

☆ 赤 + 緑+青 = 白色光

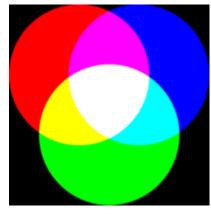
可視光線


それでは,

☆ 白色光 - 赤 = 青緑

☆ 白色光 - 緑 = 紫色

☆ 白色光 - 青 = 黄色


「補色」

電磁波スペクトルの領域

紫外 200~400 nm 可視 400~800 nm

紫外・可視は極めて狭い範囲である。

光のエネルギー

$E = hv = hc/\lambda = hc\sqrt{}$

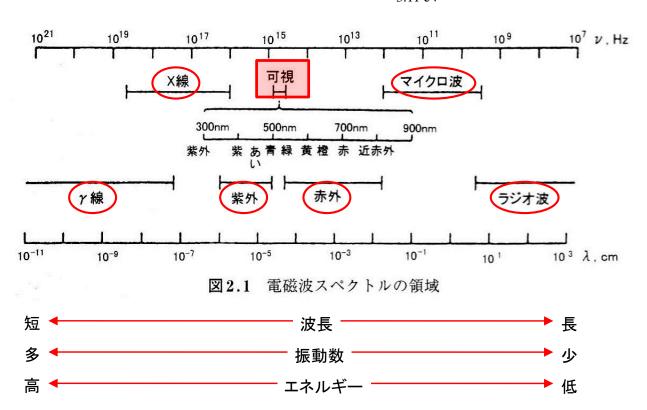
(1個の光子のエネルギー)

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ (プランク定数)

 λ (m)× ν (1/s)= c (m/s)

v: 振動数

λ: 波長


c: 光速 (真空中では c = 3.00x10⁸ m/s

▼: 波数 (1/λ) (赤外やラマンのエネルギー表示に用いられる)

400 nm の光のエネルギーは?

E = $h c v = 6.63 x 10^{-34} (J \cdot s) x 3.00 x 10^8 (m/s) x 2,500,000 (1/m) = 4.97 x 10^{-19} J$ 1.0 J = $6.25 \times 10^{18} eV$

= 3.11 eV

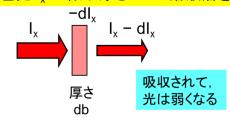
いろいろな電磁波で何が見えるのか?

γ線→原子核

X 線→内核電子

紫外·可視→外殼電子

赤外→分子振動


マイクロ波→電子スピン

ラジオ波→核スピン

電磁波のエネルギーによって見える現象は異なる。

ランベルトーベールの法則

単色光 I、が微小厚さdb の溶液層を通過する時、その一部 dl、が吸収される

$$-dI_x = k_1 I_x db$$

吸収はl_x db に比例 k₁は比例定数

$$\frac{dI_x}{I_x} = -k_1 db$$

dbが0~bまで変化する時、光の強度はIo~Iに変化

$$\int \int_{I_0}^{I} \frac{dI}{I_x} \int_{I_0}^{b} -k_1 db$$

$$\ln \frac{1}{I_0} = 2.303 \log \frac{1}{I_0} = -k_1 b$$

$$\log \frac{1}{I_0} = \frac{-k_1}{2.303} b$$

Lambertの法則 透過光の強度|は 溶液層の厚さとともに指数関数的に減少

色の濃い薄い

溶質層の厚さ = 溶質分子の数(n) と考えると

厚さが一定(bが一定)の時は、nは溶液の濃度(c)に比例する

Beerの法則

透過光の強度は溶液の濃度とともに指数関数的に減少

$$\log \frac{1}{I_0} = -k_2 c$$

物質の濃度: $C_1 < C_2 < C_3$

吸光度 A

Tは通常%で示す T, Aとも無次元

溶質層の厚さと溶液濃度 は独立しているので、

吸収スペクトル

Eint = Erot + Evib + Eelec

分子吸収

紫外可視の吸収で見えるもの→外殻電子の遷移 分子軌道→σ電子、π電子、n電子

σ:結合性のσ軌道

σ*: 反結合性のσ軌道

π:結合性のπ軌道

π*:反結合性のπ軌道

n: 孤立電子(非共有電子対)の軌道

各エネルギー準位

 σ^*

n ————

σ —

許容遷移と禁制遷移

許容遷移

σ-σ*遷移

π-π*遷移

n-π*遷移

n-σ*遷移

 $\sigma-\pi^*$ 、 $\pi-\sigma^*$ は禁制遷移(起こらないという意味ではない)

問題:どういう分子が紫外、可視で吸収を示すか?

答: π 電子をもつ、n電子をもつ。多重結合、N, O. S, Λ ロゲン。

σ-σ*遷移の例 CH₃CH₂CH₃、135 nm。

n-σ*遷移の例 CH₃Cl(塩化メチル) 173 nm、CH₃OH 183 nm, (CH₃)₃N 199 nm

π-π*遷移の例 2-オクチン 195 nm & 223 nm

アセトン

$$\pi$$
- π *遷移 H_3C H_3C

発色基と助色基

深色効果と淡色効果

発色基:近紫外~可視光を吸収する官能基(不飽和結合をもつ)

助色基: 非共有電子対をもつ官能基(-OH、NH₂、-Cl など)

発色基+助色基→長波長シフト (深色効果)、吸光度の増加 分子に陽電荷を入れた場合や溶媒を非極性から極性に変える→短波長側にシフト(淡色効果)

発色基の例

ポリエン 共役二重結合が増加するほど、長波長にシフト

 H_2 C CH_2 CH_2

金属イオン

- 1) d-d 吸収バンド
- d 軌道間での電子遷移(あまり強くない)
- 2) 配位子吸収バンド

配位子のπ-π*遷移、n-π*遷移 (強い吸収;金属イオンの分析)

3) 電荷移動吸収バンド

配位子の分子軌道-金属の d 軌道間の遷移 (強い吸収;金属イオンの分析)

表 2.2 参照

測定装置

光源 (可視部; タングステン,紫外部; 重水素) 分光部 測光部

シングルビームとダブルビーム (教科書の図参照)

測定

1. 吸収スペクトル 波長 vs.吸光度 (波長 vs.透過率)

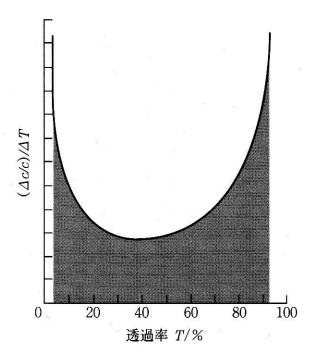


図 2.2 吸光光度法の理論的精度と 透過率

T / %	Α	透過率100%付近では,
100	0.000	分母のAが小さくなる
90	0.046	†
80	0.097	
50.1	0.300	◆ 0.1%の光強度の差は
50	0.301	吸光度差で0.001
10	1.000	
1	2.000	•
0.2	2.699	◆ 0.1%の光強度の差は
0.1	3.000	→ 吸光度差で~0.3
0.000	∞	

吸光度を0.05~1.0の範囲で測定できると、信頼性が高い 吸光光度法の特徴

利点

- ・光源の強度に依存しない
- ・測定に時間を要さない
- ・測定に熟練を要さない
- ・費用が比較的安い(装置も含めて)

欠点

感度がそれほど高くない

成分を特定できない(定性分析には向かない)

選択性が低い(前分離、マスキングが必要)

吸光光度法でなにができるか?

例)

1. 定量分析

Fe

硫酸第一鉄アンモニウム六水和物 $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$ \rightarrow モール 塩 Fe2+の一次標準物質

 $CH_3COOH-CH_3COONa$ を用いて、 $pH\sim5$ の緩衝溶液を調製 検量線の作成

1. Fe(NH₄)₂(SO₄)₂·6H₂O を HCl 酸性溶液として調製 加水分解沈殿の防止

最終濃度が $0, 2, 4, 6, 8 \times 10^{-5} \,\mathrm{M}$ になるように、メスフラスコに採取

 $[Fe(phen)_3]^{2+}$

1:3錯体 正八面体

 $\varepsilon = 1.1 \times 10^4 (510 \text{ nm})$

赤色錯体

- 2. 1,10-フェナントロリン塩酸塩を用いて、溶液を調製 最終濃度が $4x10^{-4}\,M$ になるように、メスフラスコに採取
- 3. $CH_3COOH-CH_3COONa$ を用いて、 $pH\sim5$ の緩衝溶液を調製 最終濃度が $0.1\,M$ になるように、メスフラスコに採取
- 4. 510 nm で吸光度測定

試料の測定

- 1. 試料を HCl 酸性として沸騰 $Fe_2O_3 \rightarrow Fe^{3+}$ イオンに分解
- 2. $NH_2OH \cdot HCl$ を添加 Fe^{3+} \rightarrow Fe^{2+} に還元
- 3. 1,10-フェナントロリン, 酢酸緩衝溶液を加え, 静置後, 510 nm で吸光度測定

2. 酸解離定数の測定

メチルオレンジの酸解離定数の測定

$$H_3C$$
 H_3C
 H_3C

酸性側:HIn(赤色) アルカリ性側:In-(黄色)

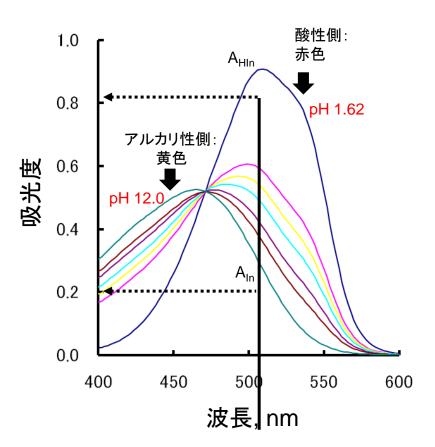
HIn の全濃度を C_{HIn} (一定) として、pH を変化させる。

全てが HIn の時(pKa>>pH) $A_{510} = A_{HIn,510} = \epsilon_{HIn,510} C_{HIn}$

全てが In^- の時(pKa << pH) $A_{510} = A_{In, 510} = \epsilon_{In, 510} C_{HIn}$

等吸収点(波長をXとする) では

 $\epsilon_{In,\;X}=\epsilon_{HIn,\;X}$


$$\begin{split} A_{510} &= \epsilon_{HIn}[HIn] + \epsilon_{In}[In^{-}] \\ &= \epsilon_{HIn}(C_{HIn} - [In^{-}]) + \quad \epsilon_{In}[In^{-}] \end{split}$$

$$[In^{-}] = \frac{A - A_{HIn}}{\epsilon_{In} - \epsilon_{HIn}}$$

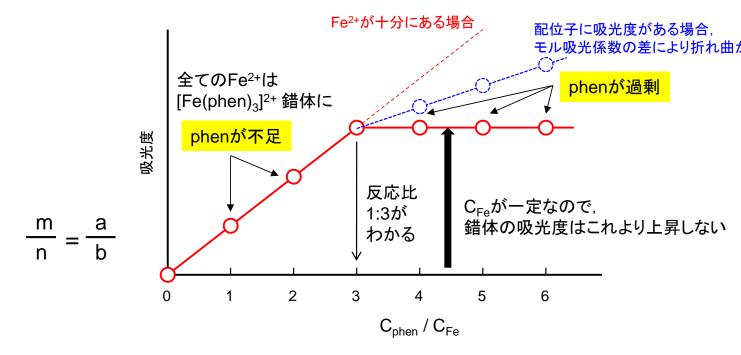
$$\begin{split} A &= \epsilon_{HIn}[HIn] + \epsilon_{In}[In^{-}] \\ &= \epsilon_{HIn}[HIn] + \epsilon_{In}(C_{HIn} - [HIn]) \end{split}$$

$$[HIn] = \frac{A_{ln} - A}{\epsilon_{ln} - \epsilon_{Hln}}$$

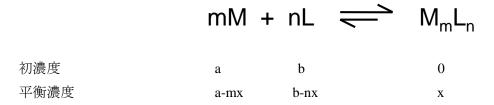
$$Ka = \frac{(A - A_{HIn})[H^{+}]}{A_{In} - A} \frac{A - A_{HIn}}{A_{In} - A} = Ka / [H^{+}]$$

pH変化に伴う吸収スペクトル

問題


pН	A ₅₁₀
(HA)	0.9081
3.32	0.5802
3.50	0.5246
3.66	0.4733
3.91	0.4021
4.12	0.354
(A ⁻)	0.2664

2. 錯体の組成決定


モル比法と連続変化法

モル比法

 Fe^{2+} 濃度 (C_{Fe}) を一定にして、添加する phen 濃度を変化させる

連続変化法

a + b = c (一定濃度) で実験

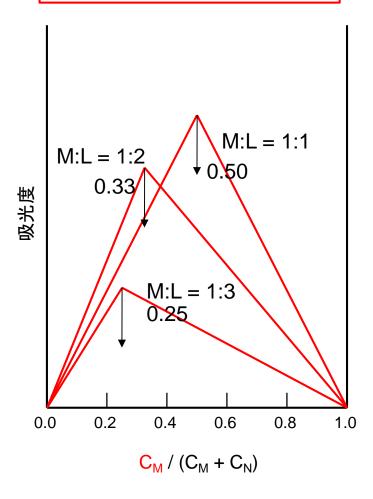
のとき錯体の生成量は最大

a と b の比率を変えて錯体の吸光度を測定する。

4	. 4	ブロ	7 広
	I . I		と ルト

а	b	ML
0.0	1.0	0.0
0.1	0.9	0.1
0.2	8.0	0.2
0.3	0.7	0.3
0.4	0.6	0.4
0.5	0.5	0.5
0.6	0.4	0.4
0.7	0.3	0.3
8.0	0.2	0.2
0.9	0.1	0.1
1.0	0.0	0.0

а	b	ML_2
0.0	1.0	0.0
0.1	0.9	0.1
0.2	8.0	0.2
0.3	0.7	0.3
0.4	0.6	0.3
0.5	0.5	0.25
0.6	0.4	0.2
0.7	0.3	0.15
8.0	0.2	0.1
0.9	0.1	0.05
1.0	0.0	0.0
	2	1


а	b	ML_3
0.0	1.0	0.0
0.1	0.9	0.1
0.2	0.8	0.2
0.3	0.7	0.23
0.4	0.6	0.2
0.5	0.5	0.17
0.6	0.4	0.13
0.7	0.3	0.1
0.8	0.2	0.07
0.9	0.1	0.03
1.0	0.0	0.0

$$\frac{a}{a+b} = \frac{1}{2}$$

$$\frac{a}{a+b} = \frac{1}{3}$$

$$\frac{a}{a+b} = \frac{1}{4}$$

最大点(折れ曲がりの点)から 反応比を決定できる

